Reteaching 3-3

Equations With Variables on Both Sides

OBJECTIVE: Solve equations with variables on both sides
MATERIALS: None

To solve equations with variables on both sides, use these strategies:

- Rewrite the equation until all terms with variables are combined on one side and all constant terms are combined on the other side. As you rewrite the equation, use inverse operations and the equality properties.
- When you perform an operation on one side, you must do the same on the other.

Example

Solve \(5a - 12 = 3a + 7\).

- \(\frac{5a - 12}{= 3a + 7}\)
- \(\frac{5a - 12}{= 3a + 7}\)

\(5a - 12 - 3a = 3a + 7 - 3a\)
\(2a - 12 = 7\)
\(2a - 12 + 12 = 7 + 12\)
\(2a = 19\)
\(a = 9.5\)

Check
\(5(9.5) - 12 \not= 3(9.5) + 7\)
\(47.5 - 12 \not= 28.5 + 7\)
\(35.5 = 35.5\)

In what other ways could you solve for \(a\)? You could add 12 to each side, then subtract 3a from each side. Or, you could subtract 5a from each side, then subtract 7 from each side.

Exercises

Fill in the blanks to show a plan to solve each equation.

1. \(9x + 4 = 6x - 11\)
 - Subtract \(6x\) from each side; subtract \(\underline{11}\) from each side.

2. \(4b - 13 = 7b - 28\)
 - Subtract \(\underline{3b}\) from each side; subtract \(\underline{28}\) from each side.

Use circles and rectangles to mark the variables and constant terms. Write a plan that tells the steps you would use and then solve each equation.

3. \(7c - 4 = 9c - 11\)

4. \(3 - 4d = 6d - 17\)

5. \(5e + 13 = 7e - 21\)

Solve and check each equation.

6. \(8f - 12 = 5f + 12\)

7. \(3k + 5 = 2(k + 1)\)

8. \(9 - x = 3x + 1\)